Search results
There are 1290 results.
IEA Experts Group "R&D Priority Setting and Evaluation" (EGRD) - Working period 2017 - 2019
The IEA Experts Group (EGRD) was established by the Committee on Energy Research and Technology (CERT). It examines analytical approaches to energy technologies, policies, and research and development and evaluates the benefits of RTI policies. Its results and recommendations feed into IEA analysis, and enable a broad perspective of energy technology issues.
IEA Experts Group "R&D Priority Setting and Evaluation" (EGRD). Working period 2020 - 2022
The IEA Experts Group (EGRD) was established by the Committee on Energy Research and Technology (CERT). It examines analytical approaches to energy technologies, policies, and research and development and evaluates the benefits of RTI policies. Its results and recommendations feed into IEA analysis, and enable a broad perspective of energy technology issues.
IEA FBC Implementing Agreement Fluidized Bed Conversion (working period 2009 - 2013)
Overview of the current status of the fluidized bed technology worldwide in regards to energy technology.
IEA FBC Implementing Agreement Fluidized Bed Conversion (working period 2017 - 2020)
The technology programme includes the collaboration, the exchange of relevant information and networking in the area of fluidized bed conversion of fuels applied for clean energy production.
IEA FBC Implementing Agreement Fluidized Bed Conversion (working period 2020 - 2023)
The aim of the project is to continue to further develop the internationally very well accepted participation of Austria in the information network of the IEA Fluidized Bed Conversion (FBC) Technology Collaboration Programme (TCP) to optimize fluidized bed conversion of fuels applied to clean energy production (heat and power). All stakeholders will be included on a national as well as on a global level.
IEA FBC Technology Collaboration Programme Fluidized Bed Conversion (Working Period 2024-2026): "IEA Green FBC"
The goal is to further expand and deepen the international cooperation of IEA fluidized bed technology both globally and nationally with regards to green technologies and to continue the successful course towards a most climate-friendly, sustainable and low-pollutant heat and power production using fluidized bed technology. All stakeholders are included and work closely together on a national and global level.
IEA Greenhouse Gas R&D Programme (IEA GHG TCP)
Founded in 1991, the remit of the GHG TCP is to evaluate options and assess the progress of carbon capture and storage, and other technologies that can reduce greenhouse gas emissions derived from the use of fossil fuels, biomass and waste. The aim of the TCP is to help accelerate energy technology innovation by ensuring that stakeholders from both the public and private sectors share knowledge, work collaboratively and pool resources to deliver integrated and cost-effective solutions.
IEA HEV TCP Task 40: Critical Raw Materials for Electric Vehicles
The production of electric vehicles and batteries requires critical raw materials. In Task 40, demand and supply are compared, based on global scenarios of the development of electric vehicle fleets, battery technologies, primary and secondary raw material potentials and recycling technologies. Potential overall ecological and social impacts of raw material and battery production are assessed.
IEA HEV TCP Task 49: Electric Vehicle-Fire Safety
As the number of electric vehicles increases, so does the need for safety. The project is creating an overview of fire safety standards for electric vehicles and networking relevant stakeholders. Challenges are discussed and experiences exchanged in national and international expert workshops. The focus is on promoting the safety of electric vehicles and increasing their acceptance.
IEA HEV Task 41: Electric Freight Vehicles (Working period 2021 - 2022)
So far, the transformation of freight transport remains one of the biggest challenges on the path to zero emission. The Task's main objectives are to monitor progress and review relevant aspects for a successful introduction of electric freight vehicles (EFV) into the market. Austrian pilot projects on EFV are used to exchange barriers and solution approaches in an international context, especially with regard to substitution potential, costs and energy consumption. Together with incentive systems for the market launch of EFV, this will be discussed with logistics companies, the ministry (BMK) and research institutions.
IEA HEV Task 45: Electrified roads (E-roads)
Electric vehicles can be charged stationary as well as dynamically while driving on so-called "e-roads". From a systemic point of view, this technology can be an addition to stationary charging and is not competing. Internationally, the academic and political discussion in this field is progressing rapidly. Task 45 aims for a mutual knowledge exchange, a joint understanding of next steps and a contribution of the Austrian position into the international debate.
IEA HEV Task 46: LCA of Electric Trucks, Buses, Two-Wheelers and other Vehicles (Working period 2022 - 2025)
The objective of this R&D service is the participation in Task 46 of the IEA Hybrid and Electric Vehicle (HEV) TCP with the work on the internationally agreed topics and the managing of the task as Operating Agent. Beside the Life Cycle Assessment (LCA) studies of typical examples also methods for the assessment of climate neutrality and circularity are developed. This is done in dedicated expert workshops.
IEA HPP Annex 28: Test procedure and seasonal performance calculation for residential heat pumps
Test procedure and seasonal performance calculation for residential heat pumps with combined space heating and heating of tap water - IEA Heat Pump Program Annex 28
IEA HPP Annex 33: Compact heat exchangers for heat pumping equipment
International cooperation aiming at widening the use of compact heat exchangers in heat pumping equipment. The goal of this project is to identify compact heat exchangers, either existing or under development, that may be applied in heat pumping equipment such as compression or absorption heat pumps.
IEA HPP Annex 47: Heat Pumps in District Heating and Cooling Systems
A significant use of alternative heat sources with the help of district heating and cooling networks is a major challenge for a sustainable energy supply. In times of increasing shares of fluctuating producers such as PV and wind energy, the relevance of heat pumps increases. Within the framework of the IEA HPT Annex 47, potentials and barriers for the integration of heat pumps in DHC networks were analyzed.
IEA HPT Annex 43: Fuel Driven Sorption Heat Pumps
The project aimed at investigating the performance and market potential of gas-fired absorption heat pumps (AHPs) in domestic and small commercial or industrial buildings or applications. Selected processes were simulated for various types of buildings in order to calculate the energetic, ecological and economical potential of this technology. The results were compared with monitoring data of a gas-fired AHP system. In addition, a market survey including market barriers for gas-fired AHPs in Austria was conducted and a list of market supporting measures was compiled.
IEA HPT Annex 48: Industrial Heat Pumps, Second Phase
Industrial heat pumps enable the use of waste heat and increase the energy efficiency of industrial processes. The aim of this project was to provide comprehensive information on the successful application of industrial heat pumps and thus contribute to the further dissemination of this technology.
IEA HPT Annex 49: Design and integration of heat pumps for nZEB
A dominating concept to reach a nearly Zero Energy Building (nZEB) is the combination of solar PV systems and heat pumps. The extended scope of the Annex 49 regards the balance of single buildings and groups of buildings/neighbourhoods, a thorough investigation of heat pump integration options for nZEBs and nZE neighbourhoods by means of monitoring and simulation as well as the design and control optimization for heat pumps in nZEB and the integration into energy systems.
IEA HPT Annex 50: Heat Pumps in Multi-Family Buildings for Space Heating and DHW
The project aims at demonstrating the potentials of heat pump technology for the energy supply of multi-family houses (MFH) and to contribute to the elimination of existing market barriers. Concepts and innovative technology options for heat pumps in MFH will be investigated in detail by means of simulations and experiments. The findings and results will be presented in international expert meetings and disseminated among national heat pump manufacturers, installers and planners.
IEA HPT Annex 51: Acoustic Signatures of Heat Pumps
The aim of the project was to increase the acceptance of heat pumps by reducing their noise emissions and vibrations and to reduce market barriers. Using innovative measurement and data analysis methods, influencing factors on the acoustic emissions of heat pump systems and the impact of acoustic protection measures were investigated. The results were prepared in the form of guidelines and recommendations for action.