Search results
There are 130 results.
"Gasthermenersatz" - Modular heat pump with environmentally friendly refrigerant to replace natural gas-based heating systems in large-scale residential buildings
The project "Gasthermenersatz" aims at developing, manufacturing, and testing a functional prototype of a decentralized, sound-optimized heat pump solution with refrigerant circuit modules connected in series or parallel. This renewable technology is well-suited to replace existing natural gas-based heating systems in large-scale residential buildings and to pave the way to carbon-neutral cities.
(energy central 400+) Marketable energy central from 400 kW with innovative, simple electricity conversion for residential building, public utility and commercial objects
Development of a marketable, decentralised "energy central" on a scale from 400 kW for the generation of electricity, heating (and cooling) for residential building, public utility and commercial objects, with a broad variety of applicable fuels on the base of regionally available biogenous residual materials.
3D*3B - 3D-Concret Printing, Reinforcement for low carbon and bending stressed structures.
The project is about 3D printed structural elements and their integration in building structures. The focus is predominantly set on bending stresses structural elements like panels and slabs. Results will point out technical, logistic and climate relevant aspects.
6D BIM-Terminal: Missing Link for the development of CO2 neutral buildings
The present project aims to close the gap between specialist consultants and Building Information Modeling (BIM) applications. For that, relevant data for cost estimation, scheduling construction planning and management or sustainable building operation and facility management, shall be added automatically to BIM elements and imported into the respective specialist planning software. This data exchange shall be carried out using IFC interface according to ÖNORM A6241-2 and the properties of the ASI properties server via a central platform, the "6D BIM-Terminal".
AGelFa - Development of surface structurable final-coating stucco systems on high-performance heat-insulating aerogel insulation plaster for historic building facades.
High-performance insulating plaster systems represent an important option toward improving the thermal insulation of historic buildings without changing their physical appearance. The high-performance aerogel insulation plaster has recently become available for deployment. In this context, the present will explore final stucco systems suitable for building with structured surfaces.
AR-AQ-Bau - Use of Augmented Reality for acceptance and quality assurance on construction sites
The aim of this research project is the development of a construction site-suitable augmented reality (AR) system included a Remote-Expert-System and a BIM-Closed-Loop data transfer system for improving the quality of construction, building security and energy efficiency as well as increasing the efficiency of construction investigation.
Alternative insulation made from modified lignocellulosic fibers
Wood as the raw material for a new insulation material
An innovative approach for facades with optimised noise protection and natural ventilation
The aim of this project was to advance the state of the art in the engineering of double-leaf building facades that facilitate natural ventilation while providing sufficient sound insulation. Realization of natural (window) ventilation is in some instances difficult due to a number of factors. Thereby, noise pollution (especially traffic noise) plays an important role. To address these issues, the project explored innovative solutions in terms of facade constructions for concurrent natural ventilation and noise control.
BIM2BEM Flow - Continuous BIM-based energy efficient planning
Automated integration and assignment of exchange requirements between the design and simulation programs, based on the elaborated exchange information requirements, should enable continuous energy efficiency planning along the design phase.
BIM4BIPV - Future aspects of building-integrated photovoltaics (BIPV) in cross-system BIM planning
Research into an end-to-end BIM planning flow for energy-optimised, building-integrated photovoltaics (BIPV) that simultaneously generates solar energy, enables optimal use of daylight and provides shading.
BIMSavesEnergy - BIM-based planning-methods for the assurance of energy-efficiency in the building process
The Building Information Model (BIM) brings about fundamental changes in the planning and construction of buildings, as the common base makes it possible to work closely together across disciplines in construction projects. In this project, BIM-based planning methods were developed, which make the influence of planning decisions on energy efficiency quantifiable and controllable in the management process.
BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes
The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.
Basic research on the load bearing capacity and high thermal insulation properties of foam glass granulate
The aim of the scientific investigations is to find the characteristic parameters of foam glass granulate applied as load transfer layer and thermal insulation, to provide the base for the application of a multi functional and economical insulation material at the interface between building and ground for buildings of the future.
Beyond - Virtual Reality enabled energy services for smart energy systems
Collaborative R&D project to develop the next generation energy services with the interplay of various technologies: Virtual Reality (VR), machine learning, physical simulation and Internet of Things (IoT) platforms.
BiBi-TGA, Potential for the ecological optimization of technical building equipment through the usage of biogenic materials
Assessment of the substitution potential of conventional components of technical building equipment by biogenic materials. The aim is to provide new data on the ecological improvement potential of the usage of biogenic resources in the technical building equipment in office buildings. The potentials are analyzed by means of LCA screenings and technical feasibility studies.
Bluetooth home control system
Purpose of this project was to realise a wireless intelligent home, that can be radio controlled from each bluetooth compatible mobile (2 mrd in curculation all over around the world). Entrence, security and also to control electrical devices where the cornerstones of this project.
CELL4LIFE - Reversible SOCs as a link between electricity, heat and gas networks to increase the self-sufficiency and resilience of neighbourhoods
A system consisting of a solid oxide fuel cell and a Machine Learning-based control system for increasing efficiency and minimizing degradation is being developed. As a link between all energy supply networks, the system is intended to increase the self-sufficiency and resilience of plus-energy districts.
COP5+ - Further development of a heat- and cooling system with seasonal heat storage at the example of Central Europe´s biggest geothermal depth drilling field
The aim was to increase the overall energy efficiency of Plus-Energy-Houses by making the heat excess of summer available for use in winter. This was carried out by improvements of the technology seasonal heat storage to an intelligent overall system. The biggest geothermal depth drilling field in Central Europe has been established.
CPC-lightweight construction collector
On the basis of our relieable CPC-collector SOLARFOCUS S1 we develop the CPC-lightweight construction collector to get more material efficiency and maximum output of solar hightemperature energy.
CellPor - cellulose polymerized - new methods for the processing of a polymer-cellulose-foam according to ecological criteria in construction
The development of a spray applicable cellulose composite as insulating material on the basis of renewable resources, combined by the development of a prototype for the spray-on technology for processing the new, water free cellulose composite are the demanding challenges of this project.