Search results
There are 131 results.
ProKlim - Optimisation of Energy Efficiency of automated indoor climate systems by using weather forecasts
Investigation of the basic energy savings potential for buildings in commercial use by including weather forecasts as a variable. Additionally, a concept for integrating weather forecasts into the heating and air conditioning control systems in buildings is planned to be developed. Within the scope of the feasibility study, a detailed analysis of technological possibilities, including both hardware and software, will be conducted.
ProKlim+ - Use of Model Predictive Control to optimize solar power consumption in case of increased energy efficiency.
Using weather forecast for building automation can help improving the energy efficiency of buildings and, thus, saving energy. In the project ProKlim+ the forecast of solar radiation will be used to optimize the building automation to satisfy the needs of the building users, and at the same time to minimize the energy demand on the one hand and to maximize the consumption of self-produced energy on the other hand.
Probing for PV façade systems made of lightweight plastic modules with reversible fittings for new and old buildings (PV-FAS_light + easy)
Probing for a new, simple, cost-effective and building-integrated PV facade system made of plastic PV modules through initial investigations for fixing technology, for building physics, for fire protection and for electrical engineering concerning the usability, the areas of applicability and the yield and application potentialfor new buildings and for existing buildings.
P³Power - Plug&Play Storage of Photovoltaic Power
The core of the project P³Power is the measurement technology NetDetection, which is able to detect the power consumption of a household from any point, e.g. a regular wall socket. Based on this technology a plug&play powerplant, consisting of photovoltaics and battery pack, is realized. The system is able to guarantee 100% self-consumption within flexible aggregates (from single households to whole communes) without any changes of existing infrastructure. The measurement technology will be implemented into digital hardware, evaluated comprehensively in lab and household environment and subsequently new energy service business models are developed.
RAARA - Residential Area Augmented Reality Acoustics
Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.
RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete
Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.
Revolutionary, cost efficient bitumen rooftop membrane with integrated photovoltaic modules
The project goal is to adapt the photovoltaic (PV) modules of crystalsol and an appropriately designed production process in order to integrate the flexible photoactive layer cost-effectively into waterproof roof membranes. At the end of the project the first membranes with integrated PV-layers will be produced. The success of this project would lead to enormous cost cutting and technological development advantages in the BIPV technology.
S - House
Innovative Use of Renewable Resources demonstrated by means of an Office and Exhibition Building
SOLROSE FP - bionical designed solarthermal collector, final product developement
Archieved goal was the final product developement oft he innovative solarthermal collector SOLrose from prototype to seriel production. Enhancements of SOLrose with respect to the state oft he art: attractive design for frontage integration, serial production of system modules, distribution and assembling.
SPACE4free - Retrofitting souterrain areas in 19th century townhouses to apartments with high quality of life and low energy consumption
Planning of durable and damage-free apartments with high quality of life and low energy consumption in moisture exposed souterrain areas of 19th century townhouses. Using innovative ventilation control systems comfortable room climate will be created. Additionally the tolerance of different types of use is ensured. A planning tool enables the scaling of the findings and thus the applicability to various planning situations.
SPIDER - Subtraction as a measure to Preserve and Insulate historic Developments by Electric Robots
The purpose of this exploration is to unlock the potential of autonomous, data-driven robots that achieve improvements of the thermal building performance through air entrapments in a continuous process.
Sani60ies - Demonstration of minimally invasive thermal and energetic refurbishment of classic 1950s and 1960s apartment buildings
System development of a façade-integrated building component activation for "warm" refurbishments with high transfer potential to buildings of classic apartment complexes from the 1950s and 1960s. The system is being tested and further developed based on three building projects and demonstrated through broad application (over 200 flats).
Serial refurbishment for buildings in timber construction
Refurbishment of single- and two-familiy houses in timber construction in Austria has a large CO2-saving potential. To meet the special requirements for the refurbishment of timber constructions, a concept for the renovation to passive house respectively plus-energy house standard with special focus on ecologic construction materials was developed in this project.
Small wind turbines for households and companies
In a practical way the project showed that with optimised small wind turbines a useful potential of wind power can also be generated at different suitable locations with low wind conditions directly at households and companies.
SonnWende+ Efficient solutions for photovoltaic energy management based on block chain technology
The project deals with the analysis of Blockchain technology in the context of renewable electricity producers and flexibility as enabler for innovative service concepts, tested in the innovation-lab “Energie Innovation Cluster Südburgenland”. The goal is to find new and efficient Blockchain-based solutions for services in energy management and trading in a local level.
Sophokles - Solar shading lamellas with photovoltaic coating for climate-neutral, energy-efficient structures
Development of lightweight, strip-like photovoltaic modules that combine shading and emission-free power generation in one monolithic component. The size and module voltage of the photovoltaic blinds can be individually adapted to the conditions of the building. The core of the innovation is an interconnection concept for thin-film solar cells, with which the film-like photovoltaic material can be interconnected in series and in parallel as required.
Sorption cooling and air dehumidification device
Solar-assisted air-conditioning in combination with comfortable controlled ventilation systems soon possible and affordably for building owners. With a new part DEC-systems should become acceptance.
StirliQ+ Component development of the expansion Stirling generator with supercritical fluid as working & lubrication medium
Technical research and further development of details or components of the novel StirliQ engine, which has the potential to overcome the technical hurdles of conventional Stirling engines. On the basis of simulations as well as a laboratory plant, a narrowing down of the process parameters with regard to a resilient pre-dimension of apparatus components is carried out.
Study of the Potential of Popcorn-Technologies for the Austrian Energy System
Syn[En]ergy: Development of Potential Synergy Effects between the Interdependency of Urban Planning goals and Photovoltaic Usage on Open Urban Landscapes
Open spaces such as parking lots, brownfields and some categories of recreation areas offer an underutilised potential for photovoltaics in urban regions. In the course of Syn[En]ergy an inter- and transdisciplinary approach potential synergies and conflicts with other use demands were investigated, a typology and practical solutions for selected areas with regard to requirements from economy, urban planning and design, legal as well social aspects developed, and then evaluated by stakeholders from enterprises, administration and the general public.