Search results
There are 13 results.
# EEG+ digital energy communities
The project addresses issues related to plus-energy neighborhoods and energy communities, both of which aim to make buildings more sustainable. The aim is to explore synergy effects and to research a possible implementation as a demonstration.
Anergy2Plus - Demonstration and expansion of an anergy network as part of a holistic energy concept and plus energy quarter
The overall objective of the project is to pursue and demonstrate a holistic approach to the design, construction and ultimately the use of the residential quarter in the context of energy supply. Especially in the area of thermal energy supply, a project with lighthouse character on the way to a plus-energy quarter is to be created by demonstrating the innovative supply concept based on an anergy network.
BIMBestand - BIM-based management of existing buildings
The objective of this research project is to develop information requirements and process descriptions for the application of BIM models related to building services in facility management and to demonstrate the lifecycle-oriented use of these models in an open BIM environment. For this purpose, software solutions for the use of IFC in the open-source platform SIMULTAN and building management software are developed and evaluated on the basis of four typical use cases.
CHALLENGE - Highly efficient use of hot gas and waste heat in air/water heat pumps for plus-energy buildings and quarters
CHALLENGE aims to further develop the system concept for air-to-water heat pumps in such a way that they can be used efficiently and without the above mentioned negative effects in densely built-up urban areas. In concrete terms, validated simulations and a functional model of the overall system on a laboratory scale are to be used to demonstrate that the concept can save 10% of electrical energy, reduce the noise of outdoor units in summer to a minimum and prevent the formation of local heat islands.
EM Städte - Monitoring and evaluation of urban energy flows
In the first phase of the project, the data source of the energy statistics will be analyzed. Based on the findings of the analysis a methodology on build up regional energy balances will be developed. The methodology will be integrated into the Senflusk tool and tested on five reference cities in Austria.
Plus Energy Melk - Path for the realization of Plus-Energy-Districs in Melk
The city of Melk has set itself the goal of playing a pioneering role in renewable energy supply and climate protection. In this context, an initiative aimed at implementing Positive Energy Districts. Two urban development projects are currently underway to examine under which framework conditions, technical and organisational solutions Positive Energy Districts can be realised. A proactive participation process aims at informing developers and investors as well as other stakeholders about the realization of PlusEnergy concepts.
Plus-Energy-Campus - Energy-flexible Positive Energy District with "Living Lab"
The project explored paths to a sustainable, future-proof Positive Energy-District (PED) in the area surrounding the location of the University of Applied Sciences Vienna (FH-Technikum Wien). The feasibility of a new university building as a Plus-Energy teaching building had been examined in detail to prepare its implementation. Central innovation contents are the energetic flexibilization of the new building and the quarter as well as the conception of the Plus-Energy building as a "Living Lab".
Post City Linz - Biodiversity in the CO2-neutral urban quarter
The project "Post City Linz" aims to show that a currently unattractive industrial wasteland can be transformed into a microclimatically ambitious, energy- and resource-efficient quarter with 150,000m² of gross floor area by means of an innovative mix of office, commercial, hotel and residential uses. The focus is on the integration of biodiversity promotion, a CO2 neutral energy supply and innovative energy management in the quarter, animal aided design as well as rainwater management based on the principle of the "sponge city".
REC-Businesspark - Investigation of the first Austrian renewable energy community business and industrial park
In the course of the project, the conceptual design of a zero-emission or plus-energy business park in Weiz with a focus on photovoltaics and fuel cells in combination with a Renewable Energy Community (E-EGe) had been carried out. By establishing the park on a "greenfield", all structures can be created according to the requirements of the E-EGe.
SmartQ+ Bruck/Leitha - Energy saving potentials through neighbourhood and community planning
First-time linking of transport and energy simulation models for municipal planning in order to visualise (energy) saving potentials in settlement development and effects of planning projects on mobility demand and the energy network of a municipality in an interactive visualisation.
Stanz+ - An innovative, energy-flexible plus-energy district - the centre of the village Stanz
Stanz+ is working on the implementation of an energy strategy for structurally weak municipalities with specific measures for revitalisation and re-densification in the building stock as well as the integration of renewable energy sources in the municipality of Stanz im Mürztal (Styria). The project includes multipliable approaches towards energy autonomy, hybrid use of energy networks for flexible usage and an energetic revitalisation of the village centre with the involvement of users in the "Rural Pioneers Community" for the usage of energy services.
ThermoCluster - Heat generation from infrastructure projects and integration into decentralised low-temperature heating and cooling networks for plus-energy districts
Integrative assessment of the geothermal potential of the Brenner base tunnel and the northern portal area, and the subsequent distribution of the heat generated from these sources to the end-consumer in potential plus-energy districts of the city of Innsbruck.
VITALITY District - Optimized energy concepts in the early planning phase of resilient, energy-efficient neighbourhoods
The aim of the VITALITY District project is to coordinate the total (electrical and thermal) load and generation profile in the design phase of urban areas and neighbourhoods in order to optimize the energy concept of energy-efficient districts. Hence smart city indicators in detailed level (buildings, individual technologies, public spaces) as well as models, principles and catalogs of criteria for energy-optimized urban neighbourhoods are going to be created. The results are going to be presented in compact form on the district level in order to serve as input for future urban planning projects.