Search results
There are 15 results.
BIMBestand - BIM-based management of existing buildings
The objective of this research project is to develop information requirements and process descriptions for the application of BIM models related to building services in facility management and to demonstrate the lifecycle-oriented use of these models in an open BIM environment. For this purpose, software solutions for the use of IFC in the open-source platform SIMULTAN and building management software are developed and evaluated on the basis of four typical use cases.
Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities
As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.
DALEC - Day- and Artificial Light with Energy Calculation
In the course of DALEC an online concept evaluation tool for architects, building engineers, lighting designers and building owners was developed. Although easy to use, the software accounts for the complex thermal and light processes in buildings and allows a simple evaluation of heating, cooling and electric lighting loads. Not only energy, but also user behavior were considered (e.g. in terms of glare protection) and visual and thermal comfort were evaluated. This novel and innovative, holistic approach makes sustainable and energy efficient building design possible for new buildings as well as refurbishment.
Eco.District.Heat - Potentials and restrictions of grid-bound heating systems of urban areas
Aim of the project Eco.District.Heat is to provide strategic decision-making support that enables Austrian towns and cities to deal with aspects of grid-bound heating (and cooling) systems in accordance with integrated spatial and energy planning from a holistic perspective when elaborating urban energy concepts.
Energy-Sponge: The Building as an Energy-Sponge - Electricity In - Heat Out
Innovative, dynamic control concepts had been developed which enable (air) heat pumps in combination with PV- or renewable grid electricity to use the building mass of a multi-familiy house as heat storage. User acceptance had been evaluated and possible business models had been developed.
FiTNeS - Facade integrated modular Split-heat pump for new buildings and refurbishment
The goal of FitNeS was the development of modular split heat pumps with compact and silent façade-integrated outdoor units for heating and domestic hot water preparation (and optionally cooling in combination with PV). The outstanding features of the concept are a modular design with a high degree of prefabrication and representing a visually and architectonically attractive, economic and sustainable solution for both new constructions and renovations. One of the main development goals is the minimization of sound emissions by means of optimized flow control.
Heat Harvest - Harvest of urban solar excess heat from buildings and surfaces to avoid summer overheating in cities
"Harvest" of solar urban excess heat from building surfaces, sidewalks, streets and squares to avoid urban heat islands by lying flat absorber pipes, which are then fed into geothermal probe storage tanks for later use as a source for heating buildings.
Photonic Cooling – Efficient cooling of buildings through the use of photonic
Within the scope of the project a photonic cooling approach was investigated and evaluated in terms of feasibility and cost efficiency for building applications. In particular cost-efficient photonic surfaces and concepts were investigated which need to have a high reflectivity in of the incident solar radiation (>97%) and a high emission coefficient within the spectral range of 8 – 13 micrometer in order to enable the emission of heat into the sky.
PowerShade - Development of electricity-generating shading solutions for energy-flexible buildings in urban space
The main goal of the cooperative R&D project "PowerShade" is the development of low-cost and universally usable electricity-generating shading solutions for energy-flexible buildings in urban space.
SocialLowCostFlex - Collaborative flexible low-cost energy supply concepts for social housing
This project aimed for feasible low-cost solutions, which allow residents of multi-party houses, with special focus on social housing to profit and participate in the energy transition process and associated trends (e.g. community generation units, exploitation of flexibility). The results of the project are low-cost concepts and business models of community generation units and utilization concepts, tested for their feasibility in a social housing complex. These concepts are based on special requirements of different lifestyles in low-income households and take the framework of social housing such as tenant fluctuation into account.
SolCalc: Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
Urban district heating extended – Development of flexible and decarbonized urban district heating systems
Development of innovative urban district heating systems by integration of long-term thermal storage, large scale heat pumps, large scale solar thermal installations, waste heat recovery and analysis and evaluation by simulation. The results of this project will provide templates for technology selection, system design and merit order for new urban district heating areas.
ecoRegeneration: Development of a "Merit-Order" in order to assess regeneration heat for geothermal probes within urban residential neighbourhoods
In urban residential areas there are not enough active-cooled usages, to use the waste heat of the cooling process as required regeneration heat for geothermal probes; free cooling of the apartments is not sufficient. The project is developing various options (waste heat from commercial uses in the ground floor zones of residential buildings, by using waste heat of data centres, additional installation of heat generation systems for regeneration) within the urban settlement area, business models and is calculating life-cycle-costs of all solutions. The result should be a kind of "merit order" for regeneration heat.
fit4power2heat
The integration of heat pumps can increase the cost effectiveness of existing heating networks and counter the high costs for the expansion of power grids at the same time. Aim of the project is to develop innovative business models for small and medium municipal heating networks with focus on synergies between heat and power market. Main focus is a heat pump pooling for several heat grids.
ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts
Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.