Search results

There are 74 results.

Stadt der Zukunft

VR4UrbanDev - Virtual Reality as an innovative, digital tool for the integrative urban development of the future

Virtual reality (VR) has the potential to make complex issues more quickly comprehensible and directly tangible. In the VR4UrbanDev project, we are using this potential for energy planning processes for buildings and urban districts. On the basis of test areas, we develop methods for importing and visualising energy-related real-time data and simulation data in the VR environment.

Stadt der Zukunft

Vilipa - Visible light based Person and Group Detection in existing buildings

Evaluation of the technical and economic feasibility of an occupancy detection system based on the technology of visible light sensing, which, in combination with the building management system, should reduce the energy consumption of buildings. The goal is to implement low-tech/low-complexity solutions that can distinguish between individuals and groups based solely on the detection of visible light reflections.

Stadt der Zukunft

VisErgyControl - Integral control system for daylight and artificial lighting for high visual and melanopic comfort with minimized primary energy consumption

Within the project VisErgyControl an integral, simulation-based, energy-efficient open loop daylight and artificial lighting control system had been developed. The research project focuses on the visual and melanopic requirements of users while minimizing the energy consumption for heating and cooling.

Stadt der Zukunft

baubehoerde.at - Development of a Vision 2030 for a Digital Building Authority and Recommendations for Action in Austria

In Austria, planning permission applications are submitted and managed largely manually. The aims of the baubehoerde.at project are to evaluate the potential and limitations of digitizing building approval processes and to create a Vision 2030 strategy for a digital building authority.

Stadt der Zukunft

digiactiv - digital transformation for more interactivity in MEP-(mechanical, electrical and plumbing-)planning

The aim of the digiactiv project is to improve the interoperability between the different stakeholders in the building construction sector using open and neutral semantic data models. With digital transformation processes, digiactiv helps to increase the quality of planning and the operation of buildings, as well as to minimize the interface risk between various stakeholders.

Stadt der Zukunft

lowTEMP4districtheat - Reduction of the system parameters of heating networks for the integration of renewable heat sources using soft sensors

Analysis of the use of soft sensors in addition to selective real measurements for the complete recording of real-time parameters of heating networks. The data obtained enable detailed grid simulations with low computing power requirements and form the basis of a strategy for lowering the grid temperatures and feeding in decentrally generated heat.

Stadt der Zukunft

mAIntenance - Investigation of AI supported maintenance and energy management

Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.

Stadt der Zukunft

openBAM - Open Building Automation Modelling - Open modeling of building automation over the entire building life cycle

Platform-independent modeling of control and regulation logic for detailed study of building automation systems involving construction and building technology. The result enables the analysis of energy saving potentials through building automation before construction.

Stadt der Zukunft

scaleFLEX - Scalable method for optimizing the energy flexibility of districts

Development of a decentrally organized automation method for improving the demand-side flexibility options of buildings and districts. The utilized data-driven algorithm promise high scalability and therefore low installation and operating costs. The developed method will be validated using different building types (high-tech office buildings, low-tech office buildings, residential buildings).

Stadt der Zukunft

see-it - Camera based, user centric daylight control system for optimized working conditions

In the project technologies in the field of building construction and building automation are being researched for quality and performance improvements in the workplace. The aim is to individualize the control of sun protection to the people who need to be protected from glare and overheating and hope to see through.

Haus der Zukunft

smart façade - energy potential of adaptive façade systems

A specially developed simulation model is employed to ascertain the energetic potential of adaptive façade systems. The dynamic behavior of the physical properties of the adaptive façade system reacts to both internal and external changing conditions. The goal was the development of an adaptive façade, which helps provide maximum comfort for the building occupants with minimum energy consumption.

Haus der Zukunft

solSPONGEhigh - High solar fraction by thermally activated components in an urban environment

Within this project the intensive use of thermally activated building elements (TABs) as an additional thermal storage in different buildings, with solar technologies (thermal, PV) preferred for energy supply, was investigated. The aim was to activate and use the thermal storage potential that is immanent in the building elements and thereby achieve solar coverage of the building's heat demand of nearly 100 %.

Stadt der Zukunft

ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts

Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.

Stadt der Zukunft

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.